

Journal of Organometallic Chemistry 519 (1996) 69-73

η^2 -Alkin-Komplexe des η^5 -Cyclopentadienylnickel-1-norbornyls

Herbert Lehmkuhl^a, Vladimir Dimitrov^{b,*,1}

^a Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim a.d. Ruhr, Germany ^b Institut für Organische Chemie, Bulgarische Akademie der Wissenschaften, BG-1113 Sofia, Bulgaria

Eingegangen den 20. Oktober 1995; in revidierter Form den 26. Januar 1996

Abstract

Cp₂Ni reacts at -50° C with 1-norLi (1-nor = 1-norbornyl = bicyclo[2.2.1]heptane-1-yl) in THF to give CpNi-1-norbornyl (3) which is stable up to -30° C. 3 reacts with alkynes to complexes of the type CpNi(1-nor)(η^2 -RC=CR) (R = Me (5a), SiMe₃ (5b), Ph (5c), CH₂OMe (5d), CH₂NMe₂ (5e), CH₂OSiMe₃ (5f)) which are stable at room temperature. 5f forms when chromatographing on Al₂O₃ the complex CpNi(1-nor)(HOCH₂C=CCH₂OH) (5g). In some cases the complexes (CpNi-1-nor)₂(RC=CR) (R - SiMe₃ (6b), Ph (6c)) and (CpNi)₂(RC=CR) (R = Me (7a), SiMe₃ (7b), Ph (7c), CH₂NMe₂ (7e), CH₂OSiMe₃ (7f), CH₂OH (7g)) are observed in small concentrations as products of thermal decomposition. The compounds were characterized by analytical and spectroscopic data (MS, ¹H and ¹³C NMR).

Zusammenfassung

Cp₂Ni reagiert bei -50° C mit 1-norLi (1-nor = 1-Norbornyl = Bicyclo[2.2.1]-hept-1-yl) zu dem in THF-Lösung bis -30° C stabilen CpNi-1-norbornyl (3). 3 reagiert mit Alkinen zu den bei Raumtemperatur stabilen Komplexen vom Typ CpNi(1-nor)(η^2 -RC=CR) (R = Me (5a), SiMe₃ (5b), Ph (5c), CH₂OMe (5d), CH₂NMe₂ (5e), CH₂OSiMe₃ (5f)). Aus 5f entsteht beim Chromatographieren auf Al₂O₃ der CpNi(1-nor)(HOCH₂C=CCH₂OH)-Komplex (5g). In einigen Fällen wurden als Produkte einer thermischen Zersetzung die Komplexe (CpNi-1-nor)₂(RC=CR) (R = SiMe₃ (6b), Ph (6c)) und (CpNi)₂(RC=CR) (R = Me (7a), SiMe₃ (7b), Ph (7c), CH₂NMe₂ (7e), CH₂OSiMe₃ (7f), CH₂OH (7g)) in kleinen Konzentrationen beobachtet. Die Verbindungen wurden durch Elementaranalyse und spektroskopisch (MS, ¹H- und ¹³C-NMR) charakterisiert.

Keywords: η^2 -Alkyne complexes; η^5 -Cyclopentadienylnickel-1-norbornyl; Alkyl; Cyclopentadienyl; Nickel; Nuclear magnetic resonance (NMR); Alkyne

1. Einleitung

Bei früheren Untersuchungen haben wir durch Reaktion von Nickelocen mit Methyllithium und 2-Butin oder Bis(trimethylsilyl)acetylen bei -78° C in THF erstmals Alkinkomplexe des CpNi-methyls erhalten [1]. Diese Verbindungen sind thermolabil und bilden oberhalb einer bestimmten Temperatur (-30° C für den 2-Butin- und 0°C für den Bis(trimethylsilyl)acetylen-Komplex) die bekannten (CpNi)₂(Alkin)-Komplexe [1– 3]. Wir hofften durch den Einsatz des 1-Norbornylrestes

* Corresponding author.

(1-nor = Bicyclo[2.2.1]-hept-1-yl), mit dem bekanntlich eine Reihe ungewöhnlich stabiler Übergangsmetall-Organyle erhalten wurden [4-6], zu stabileren Komplexe des CpNi-1-norbornyls mit Alkine zu gelangen.

2. Ergebnisse und Diskussion

Nickelocen (1) reagiert in THF und Et_2O (oder Gemischen aus beiden) mit 1-Norbornyllithium (2) bei $-50^{\circ}C$ zu einer dunkelroten Lösung des elektronisch und koordinativ ungesättigten CpNi-1-norbornyls (3) [7], das bis mindestens $-30^{\circ}C$ thermisch stabil ist. Bei Zugabe eines Alkins wird CpNi(1-nor) durch Komplexierung abgefangen, und es entstehen die Komplexe **5a**-f mit guten Ausbeuten (Schema 1). Nach NMR-Un-

¹ Stipendiat der Alexander-von-Humboldt-Stiftung von 1989–1990 am Max-Planck-Institut für Kohlenforschung.

tersuchungen (Tabelle 1) ist das Alkin η^2 -, senkrecht zur trigonal-planaren Koordinationsebene gebunden [1,9].

Die Verbindungen **5a–f** können kurzzeitig bei Raumtemperatur gehandhabt werden und sind somit stabiler als die bekannten Alkin-Komplexe des CpNimethyls [1]. Bei längerem Stehen bei Raumtemperatur beobachtet man bei **5a–c** und **5e–f** die Bildung der Komplexe (CpNi)₂(RC=CR) (R = Me (7a), SiMe₃ (7b), Ph (7c), CH₂NMe₂ (7e) und CH₂OSiMe₃ (7f), die NMR-spektroskopisch nachgewiesen wurden (Schema 1, Tabellen 1 und 2). So wurde z.B. bei der Verbindung 5a in THF- d_g -Lösung nach 10 h bei RT ein 5a-7a-Verhältnis von 31:1 und nach 10 Tagen bei RT ein Verhältnis von 13:1 festgestellt. Die Bildung der Komplexe 7 erfolgt wahrscheinlich infolge einer homolytischen Abspaltung des 1-Norbornyl-Restes, der dann als Norbornan NMR-spektroskopisch identifiziert werden kann. Bei den Verbindungen 5b und 5c wurde außerdem das Auftreten der Komplexe vom Typ 6 NMRspektroskopisch beobachtet, bei denen unter Abspaltung von Alkin aus 5 zwei CpNi-1-norbornyl-Fragmente an ein Alkin koordiniert sind. Diese Beobachtung wurde auch massenspektrometrisch durch das Auftreten

Tabelle 1

¹³C-NMR-chemische Verschiebungen der Komplexe 5, 6 und 7 (für die Nummerierung der C-Atome siehe Schema 1; für NMR-Daten der Verbindungen 7a und 7b siehe [1]; für ¹³C-NMR-Daten der Alkinen 4a-c und 4g siehe [8])

Verb.	Ср	C-1	C-2,6	C-3,5	C-4	C-7	C-8	C-9	C-10	C-11	C-12	Δδ (C≡C)
5a ^a	94.22	33.79	41.40	31.61	32.23	47.15	62.81	11.65				-10.8
5b ^a	94.62	35.28	43.00	32.07	31.83	49.73	103.96	0.99				- 10.1
5b ^b	94.36	35.26	42.68	31.80	31.48	49.45	103.64	0.68				_
6b ^b	94.55	34.76	42.88	31.93	30.06	48.97	111.45					
7b ^b	86.51				_		109.50	1.23		_	_	_
5c ^a	95.71	43.54	42.68	32.33	32.11	47.68	85.99	129.13	132.76	129.08	128.29	- 3.9
6c ^a	93.10	54.16	e	e	e	43.77	92.38	e	e	e	e	
7c ^a	88.50				_	_	99.08	e	e	e	e	_
5d °	93.82	37.72	40.88	30.89	30.76	46.57	71.70	65.66	57.82			-11.0
	[172] ^d		[131] ^d	[130] ^d	[139] ^d	[133] ^d		[147] ^d	[141] ^d			
5e ^a	94.93	36.57	42.29	32.14	32.74	47.96	70.68	56.39	45.35			-9.6
7e ^a	88.02						101.01	61.01	45.90			
5f ^a	93.60	36.78	40.87	31.00	30.48	46.30	71.56	56.73	-0.17	_	_	-12.3
7f ^a	86.93						81.59				<u> </u>	<u> </u>
5g *	94.67	38.99	42.19	32.04	32.44	47.80	74.89	56.76	_	_	_	- 9.4
7g *	87.78			<u></u>		_	84.35	50.59	_	_	_	

^a 50.3 MHz, THF- d_8 , 300 K. ^b 50.3 MHz, Benzol- d_6 , 300 K. ^c 75.5 MHz, Toluol- d_8 , 311 K. ^d J_{C-H} in Hz. ^c Die entsprechenden ¹³C-Signale sind wegen Überlagerung mit Signalen von 5c nicht eindeutig sichtbar.

Tabelle 2

¹H-NMR-chemische Verschiebungen der Komplexe 6 und 7 (die aufgeführten Daten umfassen nur Signale, die zugeordnet werden konnten; für NMR-Daten von 7a und 7b siehe [1]).

7a ^a	5.13 (s, Cp), 2.23 (s, CH ₃ C)
6b ^b	5.31 (s, Cp)
7b ^b	5.09 (s, Cp)
6c ^a	5.34 (s, Cp)
7c ^a	5.29 (s, Cp)
7e ^a	5.16 (s, Cp), 3.35 (s, CH_2N), 2.33 (s, CH_3N)
7f ^a	5.21 (s, Cp), 4.56 (s, CH_2O), 0.07 (s, CH_3Si)
7g ^a	5.22 (s, Cp), 4.52 (s, CH_2O)

^a 200 MHz, THF-*d*₈, 300 K. ^b 200 MHz, Benzol-*d*₆, 300 K.

charakteristischer Fragmente unterstützt [10]. Die Verbindungen 5 können weitgehend frei von Komplexen 7 erhalten werden, wenn die Aufarbeitung der Reaktionsgemische unterhalb 0°C erfolgt oder eine säulenchromatographische Reinigung angewendet wird (s. Experimenteller Teil). Die NMR-Daten der Komplexe 6 und 7, die in Tabellen 1 und 2 aufgeführt sind, wurden aus Proben entnommen, in denen die Verbindungen 6 und 7 in größeren Konzentrationen auftraten.

Die beobachteten Koordinationsverschiebungen $\Delta\delta$ (Tabelle 1) sind sowohl auf eine Änderung der Ladungsdichte als auch der π -Bindungsanordnung in Liganden zurückzuführen. Darüber hinaus könnten bei Verbindung **5c** Anisotropieeffekte auftreten.

Der 1,4-Dimethoxybutin-2-Komplex 5d zeigt eine bemerkenswerte Stabilität — auch nach längerem Stehen bei Raumtemperatur konnte keine Bildung von Spezies der Typen 6 oder 7 festgestellt werden. Darüber hinaus ist 5d weitgehend oxidationsbeständig, so daß nach 1 h Luftkontakt die NMR-Spektren unverändert bleiben.

Bei **5f** kann die Me₃Si-Gruppe protolytisch vom koordinierten Liganden abgespaltet werden. Beim Chromatographieren von **5f** auf einer $Al_2O_3(II-III)$ -Säule wurde der entsprechende 2-Butindiol-1,4-Komplex **5g** erhalten (s. Gleichung (1)), der überraschender Weise aus **3** und Butindiol nicht dargestellt werden konnte. Die Verbindung **5g** ist so polar, so daß sie erst mit reinem Methanol von der chromatographischen Säule eluiert werden konnte. Bei längerem Stehen von **5g** wurde auch die Bildung des Komplexes Cp₂Ni₂ (HOCH₂C=CCH₂OH) **7g** in kleinen Konzentrationen NMR-spektroskopisch nachgewiesen.

$$CpNi(1-nor)(Me_{3}SiOCH_{2}C \equiv CCH_{2}OSiMe_{3})$$
5f

$$\xrightarrow{Al_2O_3-H_2O}_{35\%} CpNi(1-nor)(HOCH_2C \equiv CCH_2OH)$$
5g
(1)

Zusammenfassend, gelang uns mit dem Einsatz des 1-Norbornylrestes eine erhöhte Stabilisierung der Koordination von unterschiedlichen Alkinen an das CpNi-1norbornyl-Fragment zu erreichen. Die Stabilität der Komplexe ist offensichtlich dem größeren Donor-Einfluß des 1-Norbornylrestes im Vergleich zu anderen Organylreste zurückzuführen [11].

3. Experimenteller Teil

Die Versuche wurden unter Argon in ausgeheizten Apparaturen und mit getrockneten Lösungsmitteln durchgeführt. Elementaranalysen: Mikroanalytisches Laboratorium Domis und Kolbe, Mülheim a.d. Ruhr. NMR-Untersuchungen: Bruker AM-200 FT (¹H- und ¹³C-NMR), WH-400 FT (¹H-NMR) und WM-300 FT (¹³C-NMR); bei ¹H-NMR- bzw. ¹³C-NMR-Daten dienten folgende Lösemittelrest-Signale als interner Standard: THF- d_8 ($\delta = 3.58$), Benzol- d_6 ($\delta = 7.15$), Toluol $d_8 (\delta = 2.09)$ bzw. THF- $d_8 (\delta = 67.4)$, Benzol- $d_6 (\delta =$ 128.0), Toluol- d_8 ($\delta = 20.4$). Nickelocen wurde aus NiCl₂ · THF [12] durch Umsetzung mit CpNa in THF hergestellt und durch Sublimation i. Vak. gereinigt. 1-Norbornyllithium wurde aus 1-Norbornylchlorid durch Umsetzung mit Li-Sand in n-Hexan dargestellt und durch eine Soxlett-Extraktion mit *n*-Pentan gereinigt [13]. Die Verbindungen 1,4-Bis(methoxy)butin-2 (4d), 1,4-Bis(dimethylamino)butin-2 (4e) und 1,4-Bis(trimethylsilyloxy)butin-2 (4f) wurden uns von Dr. E. Langguth (ehemals ZIOC Rostock) überlassen.

3.1. Spektrale Daten von 4d-f

4d. ¹H-NMR (200 MHz, Benzol- d_6 , 300 K): $\delta = 3.87$ (s, CH_2O), 3.12 (s, OCH_3). ¹³C-NMR (50.3 MHz, Benzol- d_6 , 300 K): $\delta = 82.73$ (s, CCH_2), 59.65 (t, CH_2O), 56.94 (q, OCH_3).

4e. ¹H-NMR (200 MHz, Benzol- d_6 , 300 K): $\delta = 3.15$ (s, CH_2C), 2.15 (s, CH_3N). ¹³C-NMR (50.3 MHz, Benzol- d_6 , 300 K): $\delta = 80.27$ (s, CH_2C), 48.19 (t, CH_2N), 44.01 (q, CH_3N).

4f. ¹H-NMR (200 MHz, Benzol- d_6 , 300 K): $\delta = 4.14$ (s, CH_2O), 0.61 (s, CH_3Si). ¹³C-NMR (50.3 MHz, Benzol- d_6 , 300 K): $\delta = 83.84$ (s, CH_2C), 51.17 (t, CH_2O), -0.22 (q, CH_3Si).

3.2. Darstellung von $(\eta^5$ -Cyclopentadienyl)(1-norbornyl)nickel (3) in THF und allgemeine Vorschrift zur Gewinnung von $(\eta^2$ -Alkin) $(\eta^5$ -cyclopentadienyl)-(1-norbornyl)nickel-Komplexen **5a-f**

Zu einer Lösung von 4–18 mmol Cp_2Ni in 100–150 ml THF (vorzugsweise 1/5-Gemisch aus THF-Et₂O)

wird bei -50° C die entsprechende Menge 1-Norbornyllithium (1/1-Molverhältnis) in fester Form gegeben. Man beobachtet einen Farbumschlag von Grün nach Rot und rührt noch 2 h bei ca. -50° C. Auf diese Weise dargestellte [CpNi(1-nor)]-Lösung kann mehrere Tage bei -30° C aufbewahrt werden.

Zur Bildung der Komplexe **5a–f** erfolgt die Zugabe des Alkins zu **3** zwischen — 50°C und -30°C. Nach 2 h läßt man auf RT erwärmen und filtriert das ausgefallene CpLi ab. Nach Abziehen des Lösungsmittels i. Vak. wird der viskose Rückstand mit 100–150 ml *n*-Pentan extrahiert. Nach erneuter Filtration wird das Lösungsmittel vollständig abgezogen und der Rückstand bei 10^{-3} Torr von Spuren Cp₂Ni und flüchtigen Verunreinigungen befreit.

3.3. $(2,3-\eta-2-Butin)(\eta^{5}-cyclopentadienyl)(1-norbornyl)$ nickel (5a)

Aus 3.31 g (17.54 mmol) Cp_2Ni , 1.79 g (17.56 mmol) 1-Norbornyllithium und 0.95 g (17.59 mmol) Butin-2 wurden 3.71 g (13.59 mmol, 77%) **5a** als dunkelrotes Öl erhalten. Die Aufarbeitung des Reaktionsgemisches erfolgte bis maximal 0°C.

¹H-NMR (200 MHz, THF- d_8 , 300 K): $\delta = 5.22$ (s, Cp), 2.16 (s, 9-H), 1.74 (m, 4-H), 1.48–1.06 (mehrere m, Norbornyl), 0.75 (s, 7-H). Gef.: C, 69.86; H, 7.72; Ni, 22.23. C₁₆H₂₂Ni (273.0). Ber.: C, 70.38; H, 8.12; Ni, 21.50%. MS (70 eV): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 272 (M^+ ; 28%), 219 (CpNiC₇H₁₁; 46), 206 (12), 150 (100), 136 (18), 124 (CpNiH; 29), 123 (CpNi; 23); 91 (16), 67 (15), 58 (28).

3.4. $(\eta^{s}$ -Cyclopentadienyl) $[\eta^{2}$ -bis(trimethylsilyl)acetylen](1-norbornyl)nickel (5b)

Aus 3.38 g (17.91 mmol) Cp_2Ni , 1.83 g (17.96 mmol) 1-Norbornyllithium und 3.06 g (17.96 mmol) Bis(trimethylsilyl)acethylen wurden 6.12 g (15.72 mmol, 87%) **5b** als dunkelrotes Öl erhalten. Die Aufarbeitung des Reaktionsgemisches erfolgte bis maximal 0°C.

¹H-NMR (200 MHz, THF- d_8 , 300 K): $\delta = 5.24$ (s, Cp), 1.80–1.00 (mehrere m, Norbornyl), 0.33 (s, 9-H). Gef.: C, 61.75; H, 8.25; Ni, 15.14; Si, 14.63. C₂₀H₃₄NiSi₂ (389.3). Ber.: C, 61.70; H, 8.80; Ni, 15.07; Si, 14.43%. MS (70 eV): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 388 (M^+ ; 53), 293 (CpNi(Me₃SiC₂SiMe₃); 11), 290 (28), 218 (CpNiC₇H₁₁; 69), 155 (100), 150 (82), 124 (CpNiH; 12), 123 (CpNi; 13), 73 (22).

3.5. $(\eta^{5}$ -Cyclopentadienyl) $(\eta^{2}$ -diphenylacetylen)(1norbornyl)nickel (5c)

Aus 1.82 g (9.64 mmol) Cp_2Ni , 0.98 g (9.62 mmol) 1-Norbornyllithium und 1.72 g (9.66 mmol) Diphenylacetylen wurden 2.10 g Rohprodukt von 5c erhalten. Dieses wurde in Hexan gelöst und chromatographiert $(25 \times 2.5 \text{ cm}, \text{ gefüllt mit neutralem Al}_2O_3 (II-III),$ Hexan) wobei eine rote Fraktion gesammelt wurde. Nach Abziehen des Lösungsmittels i. Vak. wurden 1.20 g (3.02 mmol, 31%) 5c als dunkelrote Kristalle erhalten.

¹H-NMR (200 MHz, Benzol- d_6 , 300 K): $\delta = 8.05$ (m, o-H_(Phenyl)), 7.19 (m, H_(Phenyl)), 5.46 (s, Cp), 1.60–0.90 (mehrere m, Norbornyl), 0.79 (s, 7-H). Gef.: C, 77.33; H, 6.42; Ni, 15.82. C₂₆H₂₆Ni (397.2). Ber.: C, 78.63; H, 6.60; Ni, 14.78%. MS (70 eV): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 396 (M^+ ; 21), 330 (7), 236 (9), 218 (CpNiC₇H₁₁; 18), 178 (100), 150 (34), 123 (CpNi; 12), 95 (27). 81 (69), 67 (97), 58 (12).

3.6. $(\eta^{5}$ -Cyclopentadienyl)[2,3- η -1,4-bis(methoxy)butin-2](1-norbornyl)nickel (5d)

Aus 1.46 g (7.74 mmol) Cp_2Ni , 0.79 g (7.75 mmol) 1-Norbornyllithium und 0.89 g (7.81 mmol) 1.4-Bis(methoxy)butin-2 wurden 1.8 g (5.40 mmol, 70%) 5**d** als dunkelrotes Öl erhalten.

¹H-NMR (200 MHz, THF- d_8 , 300 K): $\delta = 5.30$ (s, Cp), 4.54 (m, 9-H, ${}^2J_{(9-H(a),9-H(b))} = -15.5$ Hz, ${}^5J_{(9-H(a),9'-H(a))} = 1.5$ Hz, ${}^5J_{(9-H(a),9'-H(b))} = 1.0$ Hz), 1.54–0.98 (mehrere m, Norbornyl), 0.81 (s, 7-H). Gef.: C, 65.59; H, 7.69; Ni, 17.53. C₁₈H₂₆NiO₂ (333.1). Ber.: C, 64.91; H, 7.87; Ni, 17.62%. MS (70 eV): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 332 (M^+ ; 23), 218 (CpNiC₇H₁₁; 94), 150 (100), 124 (CpNiH; 36), 123 (CpNi; 35), 58 (32), 45 (47).

3.7. $(\eta^{5}$ -Cyclopentadienyl)[2,3- η -1,4-bis(dimethylamino)butin-2](1-norbornyl)-nickel (5e)

Aus 0.95 g (5.03 mmol) Cp₂Ni, 0.52 g (5.10 mmol) 1-Norbornyllithium und 0.71 g (5.07 mmol) 1,4-Bis(dimethylamino)butin-2 wurden 1.58 g Rohprodukt von **5**e erhalten. Es wurde in Hexan gelöst und chromatographiert (25×2.5 cm, gefüllt mit neutralem Al₂O₃ (II– III)). Zunächst wurde mit 200 ml Hexan eluiert, danach mit Hexan-Et₂O (von 4:1 bis 1:2) und zuletzt mit 200 ml Et₂O, wobei eine rote Fraktion gesammelt wurde. Nach Abziehen des Lösungsmittels i. Vak. wurden 0.70 g (1.95 mmol, 39%) **5e** als dunkelrotes Öl erhalten.

¹H-NMR (200 MHz, THF- d_8 , 300 K): $\delta = 5.26$ (s, Cp), 3.65 (m, 9-H, AB-Spinsystem, ${}^2J_{(9-H(a),9-H(b))} = 15.3$ Hz), 2.26 (s, 10-H), 1.71 (s, 4-H), 1.60–1.00 (mehrere m, Norbornyl), 0.76 (s, 7-H). Gef.: C, 66.34; H, 9.03; N, 7.94; Ni, 15.41. C₂₀H₃₂N₂Ni(359.2). Ber.: C, 66.88; H, 9.98; N, 7.80; Ni, 16.34%. MS (70 eV): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 358 (M^+ , 3), 313 (7), 270 (8), 218 (CpNiC₇H₁₁; 23), 198 (31), 150 (45), 58 (100).

3.8. $(\eta^{5}-Cyclopentadienyl)[2,3-\eta-1,4-bis(trimethyl-silyloxy)butin-2](1-norbornyl)-nickel (5f)$

Aus 0.83 g (4.40 mmol) Cp_2Ni , 0.45 g (4.42 mmol) 1-Norbornyllithium und 0.94 g (4.08 mmol) 1,4-Bis(trimethylsilyloxy)butin-2 wurden 1.48 g (3.29 mmol, 75%) 5f als dunkelrotes Öl erhalten. Die Aufarbeitung des Reaktionsgemisches erfolgte bis maximal 0°C.

¹H-NMR (200 MHz, THF- d_8 , 300 K): $\delta = 5.22$ (s, Cp), 4.56 (s, 9-H), 1.69 (s, 4-H), 1.45–1.00 (mehrere m, Norbornyl), 0.75 (s, 7-H), 1.10 (s, 10-H). Gef.: C, 58.64; H, 8.42; Ni, 13.02; Si, 12.38. C₂₂H₃₈NiO₂Si₂ (449.4). Ber.: C, 58.80; H, 8.52; Ni, 13.06; Si, 12.50%. MS (70 eV): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 448 (M^+ ; 3), 382 (8), 306 (5), 264 (6), 218 (CpNiC₇H₁₁; 35), 150 (32), 147 (100), 73 (38).

3.9. $(\eta^{5}$ -Cyclopentadienyl)(2,3- η -butin-2-diol-1,4)(1norbornyl)nickel (5g)

2.29 g (5.09 mmol) von **5f** gelöst in Hexan wurden chromatographiert (25×2.5 cm, gefüllt mit neutralem Al₂O₃ (II-III)). Die Verunreinigungen und die Zersetzungsprodukte wurden zunächst mit Hexan und dann mit Et₂O eluiert. Zuletzt wurde das Produkt als rote Fraktion mit Methanol eluiert. Nach Abziehen des Lösungsmittels i.Vak. wurden 0.55 g (1.80 mmol, 35%) **5g** als rotes Öl erhalten.

¹H-NMR (200 MHz, THF- d_8 , 300 K): $\delta = 5.29$ (s, Cp), 4.55 (s, 9-H), 1.50–1.00 (mehrere m, Norbornyl), 0.80 (s, 7-H). Gef.: C, 60.90; H, 7.71; Ni, 14.47. C₁₆H₂₂NiO₂ (305.0). Ber.: C, 63.00; H, 7.27; Ni, 19.24%. MS (70 eV): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 304 (M^+ ; 2), 286 ($M - H_2O$;

3), 218 (CpNiC₇H₁₁; 20), 150 (41), 123 (CpNi; 27), 91 (31), 71 (47), 58 (10), 57 (73), 42 (81), 39 (100).

Literatur und Bemerkungen

- H. Lehmkuhl, F. Danowski, G. Mehler, J. Poplawska und S. Pasynkiewicz, J. Organomet. Chem., 363 (1989) 387.
- [2] (a) J.F. Tilney-Basset, J. Chem. Soc., (1961) 577. (b) E.W. Randall, E. Rosenberg, L. Milone, R. Rosetti und P.L. Stanghellini, J. Organomet. Chem., 64 (1974) 271. (c) R. Rosetti und P.L. Stanghellini, Inorg. Chim. Acta, 15 (1975) 149.
- [3] M. Green, J.C. Jeffery, S.J. Porter, H. Razay und F.G.A. Stone, J. Chem. Soc. Dalton Trans., (1982) 2475.
- [4] B.K. Bower und H.G. Tennent, J. Am. Chem. Soc., 94 (1972) 2512.
- [5] V. Dimitrov, K.-H. Thiele und D. Schenke, Z. Anorg. Allg. Chem., 527 (1985) 85.
- [6] V. Dimitrov, J. Organomet. Chem., 282 (1985) 321.
- [7] H. Lehmkuhl und V. Dimitrov, in Vorbereitung.
- [8] (a) Für 4a: $\delta = 73.60 \ (C \equiv C)$; E. Breitmeier und W. Voelter, ¹³C NMR Spectroscopy, Verlag Chemie, Weinheim, 1978, S. 141. (b) Für 4b: $\delta = 114.06 \ (C \equiv C)$; 4c: $\delta = 89.90 \ (C \equiv C)$; 4g: $\delta = 84.30 \ (C \equiv C)$; NMR-Datensammlung, Max-Planck-Institut für Kohlenforschung, Mülheim a.d. Ruhr.
- [9] (a) H. Lehmkuhl, C. Naydowski, F. Danowski, M. Bellenbaum, R. Benn, A. Rufinska, G. Schroth, R. Mynott und S. Pasynkiewicz, *Chem. Ber.*, 117 (1984) 3231. (b) H. Lehmkuhl, T. Keil, R. Benn, A. Rufinska, C. Krüger, J. Poplawska und M. Bellenbaum, *Chem. Ber.*, 121 (1988) 1931.
- [10] Für **6b**: MS (70 eV): m/z = 533 [Cp₂Ni₂(C₇H₁₁)₂(Me₃SiC= C)], 511 [Cp₂Ni₂(C₇H₁₁)(Me₃SiC=CSiMe₃)], 460 [Cp₂Ni₂(C₇-H₁₁)₂(C=C)]; für **6c**: MS (70 eV): m/z = 518 {[Cp₂Ni₂(C₇-H₁₁)(PhC=CPh)] - 1}.
- [11] V. Dimitrov, K.-H. Thiele und R. Radeglia, Z. Anorg. Allg. Chem., 503 (1983) 177.
- [12] H. Lehmkuhl, K. Mehler und G. Hauschild, Chem. Ber., 116 (1983) 438.
- [13] V. Dimitrov, K.-H. Thiele und A. Zschunke, Z. Anorg. Allg. Chem., 494 (1982) 144.